# **Release Note**

Release Date : Sep. 2021

Product Ver. : midas Gen 2021 (v3.1) and Design+2021(v3.1)



# DESIGN OF General Structures

Integrated Design System for Building and General Structures

# Enhancements

# • midas Gen

| 1) Addition of Philippines RC Code(NSCP2015) | 4 |
|----------------------------------------------|---|
| 2) Addition of Philippines Load Combinations | 5 |
| 3) Addition of Philippines Rebar DB(PNS 49)  | 7 |
| 4) Improvement of Start Page                 | 8 |

# • midas Design+

| 1) | Add Composite Beam Design as per Eurocode     | 10 |
|----|-----------------------------------------------|----|
| 2) | Design report generation by user defined unit | 13 |



# 1. Addition of Philippines RC Code(NSCP2015)

### Add Philippines Code (NSCP 2015) of RC Design

#### **Concrete Design Code**





#### **Design Result Table**

| N | ISCP 20  | 15 RC | -Colur        | nn De     | sign Resu | lt Dialog |      |         |         |           |          |     |        |           | _        |             | × |
|---|----------|-------|---------------|-----------|-----------|-----------|------|---------|---------|-----------|----------|-----|--------|-----------|----------|-------------|---|
| ( | Code : M | ISCP  | 2015          |           | U         | nit : N   | , г  | nm      | Primar  | y Sorting | Option   |     |        |           |          |             |   |
| 0 | Sorted b | y 🖲   | Memt<br>Prope | er<br>rty |           |           |      |         | ⊖ SEC   | T ON      | ИЕМВ     |     |        |           |          |             |   |
| U | MEMB     | 051   | Sec           | tion      | fc        | fy        | 1.00 | Pu      | Mc      | Ant       | VDeber   |     | Vu.end | Rat-V.end | As-H.end | H-Rebar.end | ^ |
| U | SECT     | SEL   | Bc            | Hc        | Height    | fys       | LCB  | Rat-P   | Rat-M   | Ast       | v-Rebar  | LCB | Vu.mid | Rat-V.mid | As-H.mid | H-Rebar.mid | 1 |
| Ц | 41       |       | C             | 4         | 30.0000   | 500.000   | 7    | 2209716 | 1.8E+08 | 4208.2    | 14.5.000 | 12  | 347846 | 0.735     | 612.50   | 2-D10 @160  | 1 |
| Ц | 406      |       | 600.0         | 700.0     | 5000.0    | 400.000   | '    | 0.997   | 0.268   | 4390.2    | 14-5-020 | 12  | 347846 | 0.832     | 612.50   | 2-D10 @250  | 1 |
| Ц | 42       | F     | C             | :3        | 30.0000   | 500.000   | 2    | 3364048 | 1.9E+08 | 4308.2    | 14.4.020 | 12  | 382372 | 0.761     | 612.50   | 2-D10 @160  |   |
| Ц | 306      |       | 600.0         | 700.0     | 5000.0    | 400.000   | 5    | 0.999   | 0.278   | 4330.2    | 14-4-020 | 12  | 382372 | 0.854     | 612.50   | 2-D10 @250  |   |
| Ц | 43       |       | C             | :3        | 30.0000   | 500.000   | 7    | 3363816 | 1.9E+08 | 4308.2    | 14.4 020 | 12  | 383456 | 0.762     | 612.50   | 2-D10 @160  |   |
| Ц | 306      |       | 600.0         | 700.0     | 5000.0    | 400.000   | · '  | 0.999   | 0.278   | 4350.2    | 14-4-020 | 12  | 383456 | 0.856     | 612.50   | 2-D10 @250  |   |
|   | 44       | _     | C             | 4         | 30.0000   | 500.000   | 2    | 2204971 | 1.8E+08 | 4209.2    | 14 5 020 | 12  | 347269 | 0.734     | 612.50   | 2-D10 @160  |   |
|   | 406      |       | 600.0         | 700.0     | 5000.0    | 400.000   | 3    | 0.996   | 0.269   | 4030.2    | 14-3-020 | 12  | 347269 | 0.831     | 612.50   | 2-D10 @250  |   |
|   |          |       | -             | 0         | 00.0000   | 500.000   |      | 0045047 | 0.05.00 |           |          |     | 005044 | 0.000     | 505.00   | 0.040.0400  |   |



# **2.** Addition of Philippines Load Combinations

### Add Philippines Load combinations as per NSCP2015

| For Concrete Design                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| utomatic Generation of Load Combinations X                                                                                                              |
| Option<br>Add O Replace                                                                                                                                 |
| Steel     Cold Formed Steel     Cold Formed Steel     Footing                                                                                           |
| Design Code : NSCP 2015 🗸                                                                                                                               |
| Scale Up of Response Spectrum Load Case       Scale Up Factor : 1     RX       Factor     Load Case       1,000     RX       1,000     RY               |
| Consider Lateral Soil Pressure Factor                                                                                                                   |
| Manipulation of Construction Stage Load Case<br>ST : Static Load Case<br>CS : Construction Stage Load Case<br>ST Only CCS Only ST+CS                    |
| Consider Orthogonal Effect                                                                                                                              |
| Set Edad Cases for Ordingtonal Ellect     100 : 30 Rule     SRSS(Square-Root-of-Sum-of-Squares)                                                         |
| Generate Additional Load Combinations                                                                                                                   |
| Factors for Seismic Design                                                                                                                              |
| Will Execute Construction Stage Analysis         Consider Losses for Prestress Load Cases         Transfer Stage       1         Define         Factors |
| Consider Redundancy Factor r:<br>Load Factor : 1                                                                                                        |
| Consider Live Load Reduction Factor f1:<br>Factor for Live load Reduction                                                                               |
| OK Canad                                                                                                                                                |

| For Steel Design                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automatic Generation of Load Combinations X                                                                                                                                                               |
| Option<br>Add Replace<br>Code Selection<br>Steel Concrete SRC<br>Cold Formed Steel Footing<br>Aluminum                                                                                                    |
| Design Code : NSCP 2015 🗸                                                                                                                                                                                 |
| Scale Up of Response Spectrum Load Case<br>Scale Up Factor : 1<br>Factor Load Case<br>1,000 RX<br>1,000 RY<br>Delete                                                                                      |
| Consider Lateral Soil Pressure Factor<br>Load Factor : 0,9<br>Manipulation of Construction Stage Load Case<br>ST : Static Load Case<br>CS : Construction Stage Load Case<br>© ST Only 		 CS Only 		 ST+CS |
| Consider Orthogonal Effect                                                                                                                                                                                |
| Set Load Cases for Orthogonal Effect,<br>100 : 30 Rule      SRSS(Square-Root-of-Sum-of-Squares)                                                                                                           |
| Generate Additional Load Combinations<br>☑ for Special Seismic Load<br>☑ for Vertical Seismic Forces<br>Factors for Seismic Design,                                                                       |
| Consider Redundancy Factor r:<br>Load Factor : 1.0                                                                                                                                                        |
| Consider Live Load Reduction Factor f1:<br>Factor for Live load Reduction                                                                                                                                 |
| OK Cancel                                                                                                                                                                                                 |

| For Footing Design                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automatic Generation of Load Combinations X                                                                                                                              |
| Option<br>● Add   ○ Replace                                                                                                                                              |
| Code Selection Osteel Oconcrete SRC Cold Formed Steel <b>Footing</b> Aluminum                                                                                            |
| Design Code : NSCP 2015 🗸                                                                                                                                                |
| Scale Up of Response Spectrum Load Case<br>Scale Up Factor : 1<br>Factor Load Case<br>1,000 RX<br>1,000 RY<br>Delete                                                     |
| Consider Lateral Soil Pressure Factor<br>Load Factor : 1.6<br>Manipulation of Construction Stage Load Case<br>ST : Static Load Case<br>CS : Construction Stage Load Case |
| ST Only     CS Only     ST+CS                                                                                                                                            |
| Set Load Cases for Orthogonal Effect                                                                                                                                     |
| <ul> <li>100 : 30 Rule</li> <li>SRSS(Square-Root-of-Sum-of-Squares)</li> </ul>                                                                                           |
| Generate Additional Load Combinations for Special Seismic Load for Vertical Seismic Forces                                                                               |
| Consider Redundancy Factor r:                                                                                                                                            |
| Consider Live Load Reduction Factor f1:<br>Factor for Live load Reduction                                                                                                |
| OK Cancel                                                                                                                                                                |



# **2. Addition of Philippines Load Combinations**

### Add Philippines Load combinations as per NSCP2015

| Prevision                           | Load factors and combinations               | Remark                                                                                                |
|-------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                     | 1.4 (D+F)                                   | D · Dead Load                                                                                         |
|                                     | 1.2(D+F+T) +1.6(L+H) + 0.5(Lr or R)         | • F : Fluid Load                                                                                      |
| Strength                            | 1.2D +1.6(Lr or R) + ( <i>f</i> 1L or 0.5W) | <ul> <li>T : Temperature Load</li> <li>H : Lateral pressure load of soil and water in soil</li> </ul> |
| Load Combinations                   | 1.2D ± 1.0W + <i>f</i> 1L +0.5(Lr or R)     | L : Live load                                                                                         |
| as per 203.3.1                      | 1.2D ± 1.0E + <i>f</i> 1L                   | Lr : Roof live load                                                                                   |
|                                     | 0.9D ± 1.0W + 1.6H                          | • W : Wind load                                                                                       |
|                                     | 0.9D ± 1.0E + 1.6H                          | • E : Earthquake load (=ρEh + Ev)                                                                     |
|                                     | D + F                                       | • Em : maximum effect of horizontal and vertical earth-quake force (= $\Omega_{2}$ Fh)                |
| Allowable stress                    | D+H+F+L+T                                   |                                                                                                       |
| Load Combinations<br>as per 203 4 1 | D + H + F + (Lr or R)                       | - Alternate load combinations as per 203.4.2 is auto-generated                                        |
| us per 200.4.1                      | D + H + F + 0.75[L+T(Lr or R)]              | In footing design for serviceability verification.                                                    |
|                                     | D + H + F ± (0.6W or E / 1.4)               | • <i>f</i> 1 : Live load reduction factor                                                             |
|                                     | D + H + F + 0.75[L + Lr(0.6W or E/1.4)]     | -1.0 : for floors in places of public assembly, for live loads in                                     |
|                                     | 0.6D ± 0.6W + H                             | -0.5 : for other live loads                                                                           |
| Alternate load combinations         | 0.6D ± E/1.4 + H                            | <ul> <li>ρ : Redundancy factor as per equation 208-20</li> </ul>                                      |
| as per 203.4.2                      | D + L + (Lr or R)                           | • $\Omega_0$ : Seismic force amplification factor as set forth in                                     |
|                                     | D + L ± 0.6W                                | Section.4.10.1                                                                                        |
|                                     | D + L ± E/1.4                               | • Ev : Vertical earthquake load (not provided in Gen2021 v3.1)                                        |
| Special load combinations           | 1.2D + <i>f</i> 1L +1.0Em                   |                                                                                                       |
| as per 203.5                        | 0.9D ± 1.0Em                                |                                                                                                       |



# 3. Addition of Philippines Rebar DB(PNS 49)

### Add Rebar DB and material as per PNS49

|                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                           | X                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| <ul> <li>Environment         <ul> <li>General</li> <li>View</li> <li>Data Tolerances</li> <li>Property</li> <li>Load</li> <li>Results</li> <li>Design/Load Code</li> <li>Notice &amp; Help</li> <li>Graphics</li> <li>Formats - Dim, &amp; Others</li> <li>Formats - Forces</li> <li>Formats - Loads</li> </ul> </li> </ul> | Design Code   Load Cod<br>Steel<br>Design Code:<br>TWN-ASD96<br>National Annex:<br>Recommended<br>Cold Formed Steel<br>Design Code:<br>AISI-CFSD08<br>National Annex:<br>Recommended | de<br>Concrete<br>Design Code:<br>NSCP 2015 ~<br>National Annex:<br>Italy<br>Rebar<br>Material Code<br>PNS49(RC) ~<br>Material DB<br>230R<br>230R<br>230R<br>250R<br>550R | SRC<br>Design Code:<br>SSRC79<br>Rebar<br>Material Code<br>KS01(RC)<br>Material DB<br>SD400 |

#### Rebar strength as per PNS49

|      | Tonsilo Strongth | Viold Strongth |
|------|------------------|----------------|
|      | rensile sciengen | field Strength |
|      | Fu (Mpa)         | Fy (Mpa)       |
| 230R | 390              | 230            |
| 280R | 480              | 280            |
| 420R | 620              | 420            |
| 520R | 690              | 520            |
| 550R | 725              | 550            |

#### Rebar DB as per PNS49 & Design rebar setting

| 1 | Reb | ar Inforn | nation |             |               |                  |                  | Х |
|---|-----|-----------|--------|-------------|---------------|------------------|------------------|---|
| Γ | Re  | bar Code  | PNS4   | 19          |               |                  |                  | < |
|   |     | СНК       | Name   | Dia<br>(mm) | Area<br>(mm²) | Dia(Out)<br>(mm) | Weight<br>(N/mm) | ^ |
|   |     |           | D10    | 10.0000     | 78.5400       | 10.0000          | 0.0061           | 1 |
|   |     |           | D12    | 12.0000     | 113.1000      | 12.0000          | 0.0087           | 1 |
|   |     |           | D16    | 16.0000     | 201.0600      | 16.0000          | 0.0155           |   |
|   |     |           | D20    | 20.0000     | 314.1600      | 20.0000          | 0.0242           |   |
|   |     |           | D25    | 25.0000     | 490.8800      | 25.0000          | 0.0351           |   |
|   |     |           | D28    | 28.0000     | 615.7500      | 28.0000          | 0.0474           |   |
|   |     |           | D32    | 32.0000     | 804.2500      | 32.0000          | 0.0619           |   |
|   |     |           | D36    | 36.0000     | 1017.880      | 36.0000          | 0.0784           |   |
|   |     |           | D40    | 40.0000     | 1256.640      | 40.0000          | 0.0967           |   |
|   |     |           | D50    | 50.0000     | 1963.500      | 50.0000          | 0.1511           |   |
|   |     |           |        |             |               |                  |                  | × |
|   |     |           |        |             |               | ОК               | Close            |   |



## 4. Improvement of Start page

-You can see the latest news of midas program in banner. -Recently used projects can be opened by clicking on the list. 🔯 Start Page 🛛 🛛 □ Contact us 1 名 MIDAS Account Welcome to MIDAS Go to MIDAS Customer Online Support Go to midas Structure Go to Download Center(new Gen Installer&patch)  $\equiv$ Recent Sample steel model New Project + 2021-08-24 20:58:43 D:\00.2021년\해외 건축기술 성장리포트\컨텐츠 제작\Steel + desig.. Sample RC model-1 App7\_EC3 design\_final model 2021-08-20 17:43:09 2021-08-02 15:30:09 D:\00.2021년\해외 건축기술 성장리포트\컨텐츠 제작\Steel + desig.. D:\00.2021년\해외 건축기술 성장리포트\컨텐츠 제작\Steel + desig.. 7-DOF\_BOX masonry pushover 2021-08-23 15:35:50 2021-05-24 08:20:50 C:\Users\hyw1005\Downloads\7-DOF BOX.mgb C:\Users\hyw1005\Downloads\masonry pushover.mgb GSD RC Column masonry pushover\_cLBC2 2021-05-24 16:50:01 2021-07-16 17:20:34 C:\Users\hyw1005\Downloads\masonry pushover\_cLBC2.mgb C:\Users\hyw1005\Downloads\GSD\_RC Column.mgb





# **1. Composite beam design as per Eurocode**

### Support composite beam design as per Eurocode 4: 04

| Mode/Link RC Steel SRC Aluminum | n Reinforce Load Option Tool            | View Help            |                                                                                 |                                    |                                              |   |
|---------------------------------|-----------------------------------------|----------------------|---------------------------------------------------------------------------------|------------------------------------|----------------------------------------------|---|
| Select SRC>Co                   | mposite Beam                            |                      |                                                                                 |                                    |                                              |   |
| VorkBar 🔻 🕂                     | Start Page Member Member List           | Drawing Quantity 🔹 🤉 | K Report                                                                        |                                    |                                              |   |
| Add new member                  | General                                 | Double click to Zoom | 100% V Print Save Report                                                        | Option Summary Report              | Include Input Data                           |   |
| System SRC ~                    | Member Name CB01                        | bouble click to zoom |                                                                                 |                                    |                                              |   |
| Type Composite Beam ~           | Apply this Member to   Dwg & Report   ~ | 1 1410/0200          | Steel beam at construction stage (Mma                                           | x, 5.000m)                         |                                              |   |
| Name                            | Section Slab Deck Load                  | -T-WIA@200           | 1. Calculation Summary                                                          |                                    |                                              |   |
| Option Add                      | Material                                |                      | (1) Moment Resistance                                                           |                                    |                                              |   |
| Keep Sect. & Bar Data           |                                         |                      | Category                                                                        | Value Criteria                     | Ratio Note                                   |   |
| 2 Define Design Code 8          | v module                                | ╽╴┝────┤≁╽           | Major Axis ( kN·m )                                                             | 10.98 360                          | 0.0305                                       |   |
| se design code c                |                                         |                      | (2) Shear Resistance                                                            |                                    |                                              |   |
| Option                          | Pebar 58.015 VMPa                       | 8                    | Category                                                                        | Value Criteria                     | Ratio Note                                   |   |
| Design Code : Eurocode4:04      | Rebai                                   | 8.600 4              | Major Axis ( kN )                                                               | 0.000 678                          | 0.000                                        |   |
| Rebar DB : UNI                  | Section                                 |                      | (3) Combined Ratio                                                              |                                    |                                              |   |
|                                 | Shape H Section ~                       |                      | Category                                                                        | Value Criteria                     | Ratio Note                                   |   |
| Besign Code : Eurocode4:04      | Use DB IPE400 V                         | 180                  | Bending and Shear Resistance, Major                                             |                                    |                                              |   |
| - Big Design Option             | H 400.00 mm ^                           |                      | (4) Buckling Resistance                                                         |                                    |                                              |   |
| Drawing Option                  | B 180.00 mm                             |                      | Category                                                                        | Value Criteria                     | Ratio Note                                   |   |
| Preference                      | tw 8.60 mm                              | Double click to Zoom | Lateral Torsional Buckling Resistance ( kN·m )                                  | 10.98 360                          | 0.0305                                       |   |
| E Transite Beam (1)             | tr 13.50 mm                             |                      |                                                                                 |                                    |                                              |   |
| CB01                            | 1 21.00 mm V                            |                      | 2. Classification                                                               |                                    |                                              |   |
|                                 | Span & Support                          | -2218 65             | Flance                                                                          | Web                                | Section                                      |   |
| 🛨 Composite Beam                | Use Support                             | ↓ <u></u>            | Class 1                                                                         | Class 1                            | Class 1                                      |   |
|                                 | Span 10.00 m                            | 668.25               |                                                                                 |                                    |                                              |   |
|                                 | Spacing 3.00 m                          | <del>6</del>         | 3. Moment Resistance                                                            |                                    |                                              |   |
|                                 | Unbraced Length 1.00 m                  | Ň                    | [ BS EN 1993-1-1:2005, 6.2.5 ]<br>[ Calculation Summary ( Moment Resistance ) ] | 1                                  |                                              |   |
|                                 |                                         | 882.1450             |                                                                                 |                                    |                                              |   |
|                                 |                                         |                      | Major Axis                                                                      | 0.00 0.10 0.20 0.30 0.40 0.50 0.60 | 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 | o |
|                                 |                                         | 668.25               | Check Items                                                                     | Major Axis (X)                     | Minor Axis (Y)                               |   |
|                                 |                                         |                      | Wpi                                                                             | 1,308,000mm <sup>3</sup>           | -                                            |   |
|                                 |                                         |                      | Med                                                                             | 360kN-m                            | -                                            |   |
|                                 |                                         |                      | Med / MRd                                                                       | 0.0305                             | -                                            |   |
|                                 |                                         | l                    | 4. Shear Resistance                                                             |                                    |                                              |   |
|                                 | Design(F4) Check(F5) Report             | Apply(F3)            | [ BS EN 1993-1-1:2005, 6.2.6, 6.2.10 ]                                          |                                    |                                              |   |
|                                 |                                         |                      | [Calculation Summary (Shear Resistance)]                                        |                                    |                                              |   |
|                                 |                                         |                      | Major Axis                                                                      | 0.00                               |                                              |   |
|                                 |                                         |                      | Check Home                                                                      | 0.00 0.10 0.20 0.30 0.40 0.50 0.60 | 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 | 0 |
|                                 |                                         |                      |                                                                                 |                                    |                                              |   |



# **1. Composite beam design as per Eurocode**

### Procedure of Composite Beam Design

|                                                  | E= 400                                                   |                |        |
|--------------------------------------------------|----------------------------------------------------------|----------------|--------|
| H-Beam                                           | FE430                                                    |                | ~      |
| Shear Connector                                  | Fe360                                                    | _              | ~      |
| Concrete                                         | 24 ~                                                     | MPa            |        |
| Rebar                                            | 413.7 🗸                                                  | / MPa          |        |
| Section<br>Shape                                 | H Section                                                |                | ~      |
| Section<br>Shape<br>Use DB                       | H Section<br>IPE400                                      |                | ~<br>~ |
| Section<br>Shape<br>Use DB                       | H Section<br>IPE400<br>400.00                            | mm             | ~      |
| Section<br>Shape<br>Use DB<br>H<br>B<br>tw       | H Section<br>IPE400<br>400.00<br>180.00<br>8.60          | mm<br>mm       | ~      |
| Section<br>Shape<br>Use DB<br>H<br>B<br>tw<br>tf | H Section<br>IPE400<br>400.00<br>180.00<br>8.60<br>13.50 | mm<br>mm<br>mm | ~      |

3.00

1.00

| ection S          | ab Deck          | Lo     | ad  | 1         |
|-------------------|------------------|--------|-----|-----------|
| Slab<br>Thickness | 150              | .00    |     | mm        |
| T-Shap            | e                | 0      | Hal | f T-Shape |
| Rebar<br>Conside  | er Rebar         |        |     |           |
| Cover             | 20.00            |        | mm  |           |
| Тор               | P10              | $\sim$ | @   | 450 ~     |
| Bottom            | P10              | $\sim$ | @   | 450 ~     |
| Shear Con         | nector<br>I Stud |        |     |           |
| Туре              | M1               | 9      |     | ~         |
| Columns           | 1                |        |     |           |
| Spacing           | 300              | 0.00   |     | mm        |
|                   |                  | 0.00   | _   |           |

| ction   5 | lab Deck Load        |           |
|-----------|----------------------|-----------|
| eck Plate |                      |           |
| Use De    | eck Plate<br>refined | Prop      |
| Section   | DPL-50.8x303x116x    | 182x1.2 ∨ |
| Hr        | 50.80                | mm        |
| Sr        | 303.00               | mm        |
| Br0       | 116.00               | mm        |
| Br1       | 182.00               | mm        |
| t         | 1.20                 | mm        |

**Define Deck information** 

| Section   Slab   Dec<br>Design Load | x Load                |   |
|-------------------------------------|-----------------------|---|
| Live Load                           | 5 kN/m <sup>2</sup>   | 2 |
| Finishing Load                      | 1.2 kN/m <sup>2</sup> | 2 |
| Construction Load                   | 1.5 kN/m <sup>2</sup> | 2 |
| Consider Self We                    | ight                  |   |

**Define Loads** 

#### Step 1.

Spacing

Unbraced Length

Define material properties & sections of H-beam/Shear connector /Concrete/rebar And input the beam's span/spacing/unbraced length.

m

**Step 2.** Define Slab information. (Thickness,rebar, shear connector type)

#### Step 3.

Define deck plate information and deck directions.

#### Step 4.

Define design loads. Input construction load for constructions stage, and Live load & finishing load for normal stage.



# **1.** Composite beam design as per Eurocode

### Summary & Detail design report in Composite beams

#### Summary design report

#### Steel beam at construction stage (Mmax, 4.000m)

#### 1. Calculation Summary

(1) Moment Resistance

| Category          | Value | Criteria | Ratio |
|-------------------|-------|----------|-------|
| Maior Axis (kN-m) | 61.03 | 360      | 0.170 |

#### (2) Shear Resistance

| Category          | Value | Criteria | Ratio |
|-------------------|-------|----------|-------|
| Major Axis ( kN ) | 0.000 | 678      | 0.000 |
|                   | -     |          |       |

#### (3) Combined Ratio

| Category                            | Value | Criteria | Ratio |
|-------------------------------------|-------|----------|-------|
| Bending and Shear Resistance, Major | -     | -        | -     |

#### (4) Buckling Resistance

| Category                                       | Value | Criteria | Ratio |
|------------------------------------------------|-------|----------|-------|
| Lateral Torsional Buckling Resistance ( kN·m ) | 61.03 | 360      | 0.170 |

#### Composite beam at normal stage (Mmax, 4.000m)

#### 1. Calculation Summary

#### (1) Bending resistance

| Category                    | Value | Criteria | Ratio |
|-----------------------------|-------|----------|-------|
| Bending resistance ( kN·m ) | 230   | 698      | 0.330 |

#### (2) Check vertical shear resistance

| Category                         | Value | Criteria | Ratio |
|----------------------------------|-------|----------|-------|
| Vertical shear resistance ( kN ) | 0.000 | 678      | 0.000 |

#### (3) Check Longitudinal Shear Resistance

|        | Category                         | Value | Criteria | Ratio |
|--------|----------------------------------|-------|----------|-------|
| Longit | udinal shear resistance ( kN/m ) | 457   | 871      | 0.525 |



· Coordinate of Plastic N.A. : in Concrete Slab

#### (2) Calculation for moment capacity of section

| [ BS EN 1994-1-1:2004 | 6.2.1.2 | (1)] |
|-----------------------|---------|------|
|-----------------------|---------|------|

| Part                | Axial Comp. Capacity<br>(kN) | Arm Length<br>(mm) | Moment Capacity<br>(kN·m)    |
|---------------------|------------------------------|--------------------|------------------------------|
| Concrete Slab       | -2,018                       | 42.67              | 86.11                        |
| Concrete Slab       | 0.000                        | 20.27              | 0.000                        |
| Reinforcing Steel   | -                            | -                  | -                            |
| Reinforcing Steel   | 144                          | 0.000              | 0.000                        |
| Steel Top Flange    | 668                          | 82.55              | 55.16                        |
| Steel Web           | 882                          | 276                | 243                          |
| Steel Bottom Flange | 668                          | 469                | 313                          |
| Total               |                              |                    | M <sub>pl,Rd</sub> = 698kN·m |

[ The sign of moment capacity is determined by the direction of the moment regardless of the direction of the force. ]



| Condition               | Equation for M <sub>Rd</sub> | Value   |
|-------------------------|------------------------------|---------|
| x <sub>pl</sub> ≤ 0.15h | βM <sub>pl,Rd</sub>          | 698kN-m |



#### f<sub>u</sub> = 360MPa ≤ 500MPa

- (2) Calculate longitudinal shear force
   [BS EN 1994-1-1:2004, 6.6.3.1]
   n = E<sub>n</sub> / E<sub>cm</sub> = 6.734
- N<sub>c.el</sub> = 243kN
- N<sub>c,f</sub> = 4,080kN
- M<sub>pl,Rd</sub> = 698kN ⋅ m
- M<sub>el,Rd</sub> = 83.96kN·m
- +  $V_{L,Ed} = (N_{c,f} N_{c,d}) \frac{M_{Ed} M_{d,Rd}}{M_{pl,Rd} M_{dl,Rd}} = 914 \text{kN}$
- V<sub>L,Ed</sub> = V<sub>L,Ed</sub> / L<sub>v</sub> = 457kN/m
- (3) Calculate design shear resistance of headed stud [ BS EN 1994-1-1:2004, 6.6.3.1]
- α = 1.000
- h<sub>sc</sub> / d = 5.263
- $P_{Bd,1} = \frac{0.8 f_u \pi d^2 / 4}{= 65.33 kN/stud}$
- Υν Υν Υν
- $P_{Rd,2} = 0.29 \alpha d^2 \frac{(f_{ck} E_{cm})^{1/2}}{Y_V} = 72.46 \text{kN/stud}$
- $P_{Rd}$  = min [  $P_{Rd,1}$  ,  $P_{Rd,2}$  ] = 65.33kN/stud
- v<sub>L,Rd</sub> = P<sub>Rd</sub> N S<sub>c</sub> = 871kN/m

Serviceability check including vibration check is not provided in Design+2021 v3.1 (4) Check Longitudinal Shear Resistance • View / View = 0.525 < 1.000</p>

MIDAS

# 2. Design report generation by user defined unit

### The unit system of Design report can be changed by user defined.





# 2. Design report generation by user defined unit

### The unit system of Design report can be changed by user defined.

#### Case 1



#### 1. General Information

| Eurocode2:04 N.mm 24.00N/mm <sup>2</sup> 400N/mm <sup>2</sup> 400N/mm <sup>2</sup> | Design Code  | Unit System | F <sub>e*</sub>        | E <sub>v</sub>       | E <sub>w</sub>       |  |
|------------------------------------------------------------------------------------|--------------|-------------|------------------------|----------------------|----------------------|--|
|                                                                                    | Eurocode2:04 | N,mm        | 24.00N/mm <sup>2</sup> | 400N/mm <sup>2</sup> | 400N/mm <sup>2</sup> |  |

#### 2. Length & Factor

| Section      | K <sub>x</sub> | Ky    | L <sub>x</sub> | Ly     | Ye    | γs    | α <sub>cc</sub> | Øef   |
|--------------|----------------|-------|----------------|--------|-------|-------|-----------------|-------|
| 500 x 500 mm | 1.000          | 1.000 | 3.500m         | 3.500m | 1.500 | 1.150 | 0.850           | 1.000 |

#### Case 2



### 1. General Information

| Design Code  | Unit System | F <sub>ok</sub> F <sub>v</sub> |                          | F <sub>vs</sub>          |  |
|--------------|-------------|--------------------------------|--------------------------|--------------------------|--|
| Eurocode2:04 | N,mm        | 3.481kip/in <sup>2</sup>       | 58.02kip/in <sup>2</sup> | 58.02kip/in <sup>2</sup> |  |
|              |             |                                |                          |                          |  |

[User defined unit system is applied. (US Unit System : Ibf, in )]

#### 2. Length & Factor

| Section          | Kx    | Ky    | Lx      | Ly      | Ye    | γs    | α <sub>cc</sub> | Øof   |
|------------------|-------|-------|---------|---------|-------|-------|-----------------|-------|
| 19.69 x 19.69 in | 1.000 | 1.000 | 11.48ft | 11.48ft | 1.500 | 1.150 | 0.850           | 1.000 |

#### Case 3

| Unit System        |      |  |  |  |  |  |  |  |
|--------------------|------|--|--|--|--|--|--|--|
| 🗹 User Unit System |      |  |  |  |  |  |  |  |
| tonf ~             | ft v |  |  |  |  |  |  |  |
|                    |      |  |  |  |  |  |  |  |

#### 1. General Information

| Design Code  | Unit System | F <sub>ck</sub>         | F <sub>v</sub>            | F <sub>vs</sub>           |  |
|--------------|-------------|-------------------------|---------------------------|---------------------------|--|
| Eurocode2:04 | N,mm        | 227tonf/ft <sup>2</sup> | 3,789tonf/ft <sup>2</sup> | 3,789tonf/ft <sup>2</sup> |  |
|              | 1           |                         |                           |                           |  |

[User defined unit system is applied. (Unit System : tonf, ft)]

#### 2. Length & Factor

| Section          | K <sub>x</sub> | Ky    | L <sub>x</sub> | Ly      | Ye    | γs    | α <sub>cc</sub> | Øof   |
|------------------|----------------|-------|----------------|---------|-------|-------|-----------------|-------|
| 1.640 x 1.640 ft | 1.000          | 1.000 | 11.48ft        | 11.48ft | 1.500 | 1.150 | 0.850           | 1.000 |

